What is SmartMesh IP™?

SmartMesh IP is defining the way to connect smart devices. With advanced network management and comprehensive security features, SmartMesh IP delivers reliable, scalable, energy efficient wireless sensor connectivity. Using up to 8 times less power than other solutions, SmartMesh IP is the industry’s most energy-efficient wireless mesh sensing technology even in harsh, dynamically changing RF environments. It is an excellent way to create a smart, low power network infrastructure.

Based upon the wireless IEEE 802.15.4e standard, SmartMesh IP creates full-mesh networks, sometimes referred to as “mesh-to-the-edge” networks. SmartMesh IP networks use a “triple-play” of wireless mesh technologies—time diversity, frequency diversity, and physical diversity—to assure reliability, resiliency, scalability, power source flexibility, and ease-of-use. At the core the technology is an intelligent mesh network with advanced algorithms and power saving technologies that enable powerful features not available from other WSN providers including:

  • Ultra low power consumption
  • Deterministic power management and optimization
  • Auto-forming mesh technology for a self-healing and self-sustaining network
  • Dynamic bandwidth support, load balancing and optimization
  • Network management and configuration
  • Zero collision low power packet exchange
  • Scalability to large, dense, deep networks

The SmartMesh network architecture is based on Time Synchronized Mesh Protocol (TSMP). TSMP is a full networking stack that is compatible with the IEEE 2.4 GHz 802.15.4 2006 radio standard. TSMP is a building block of the ISA100.11a standard from the International Society of Automation.

The TSMP includes a Time Slotted Channel Hopping (TSCH) media access layer (MAC). TSCH works by dividing time into ‘slots’, and providing a mechanism to map timeslots to channels with a pre-assigned hopping sequence.

The built-in SmartMesh intelligence utilizes TSMP and TSCH to ensure:

  • Nodes know precisely when to talk, listen, or sleep
  • Packet exchanges are synchronized
  • No packets collide on the network
  • Every packet is scheduled and synchronized for energy efficiency with no extra preamble (Tx side) or guard interval time (Rx side)

Network synchronization also enables pair-wise channel hopping – also known as frequency diversity – providing important benefits throughout the network:

  • Multiple transmissions can occur simultaneously, increasing network bandwidth
  • Automatically changes channels to avoid inevitable packet collisions
  • Networks can be both dense and scalable without creating debilitating RF interferences

SmartMesh networks provide redundant routing to the network gateway, as every node in the mesh network has the same routing capabilities. Each node is able to receive data from any other network node that is within range, and it can transmit data to any other network node that is within range. If one path to the network gateway fails, the network nodes will immediately detect it and reroute through another. Individual nodes make routing decisions based upon which other nodes are currently available, proximity to the network gateway, and current traffic load. This makes the network self-forming and self-healing, as no single node represents the only path to the gateway. (Fig. 1) This also makes mesh networks highly scalable, as devices can transmit data over long distances by passing data through intermediate devices to reach more distant ones, with no need for centralized control or a high-power transmitter/receiver that is able to communicate with all of the networked devices. (Fig. 2)

Path Diversity

Robust and Resilient

Multipath RF interference is unavoidable in real life environments. With the time-synchronized channel hopping to identify the best available connections, SmartMesh IP mesh networks can dynamically recognize interferers and adapt channel usage to avoid the channels that are consistently unreliable.

When combined with redundant routing capabilities, channel hopping gives a SmartMesh IP network five nines ( >99.999%) data reliability, even in the most challenging RF environments.

Battery Life

SmartMesh IP devices sleep at ultralow power between scheduled communications, typically resulting in a duty cycle of < 1%.  Nodes know precisely when to talk, listen or sleep, and data packets won’t collide on the network. Unlike other mesh technologies, no power and time-consuming path rediscovery is required.

Security

SmartMesh networks are among the most secure mesh networks available. All traffic in a SmartMesh network is protected by end-to-end encryption, message integrity checking, and device authentication. Additionally, the SmartMesh network manager contains applications that enable the secure joining of the network, key establishment, and key exchange.

Using 128 bit AES-based encryption with multiple keys, SmartMesh also includes message integrity check (MIC) to protect transmitted data with message authentication codes; automatic synchronized key changeovers and device authentication.

Add A Node

Making Wireless Sensors as Accessible as Web Servers

The Internet of Things revolution is upon us, and by the year 2020, therewill be over 50 billion connected things in the world. With the world’s population increasing and resources...

Wzzard Network Planning and Installation Application Note

Planning, deploying and installing a Wzzard network does not require any special network expertise. But some simple guidelines should be followed. Let’s discuss some topics that are the keys to enabling a robust network installation. These include Planning a Deployment, Verification of Network Health and Troubleshooting common problems.

Getting Security Right in Wireless Sensor Networks

You may define rules in the router for switching between two APNs on one SIM card or between two SIM cards or network providers. The router can automatically switch between the network setups when the active PPP connection is lost, the data limit is exceeded, or the binary input on the front panel goes active.

Wzzard Security Platform

The Spectre Network Gateway places the SmartMesh IP network behind a firewall. If connecting via the cellular data networks, the Spectre Network Gateway lets users use VPN tunneling, which makes the cellular systems as secure as proprietary infrastructure.

A Second Warm Welcome to Wireless Mesh Networking

You may define rules in the router for switching between two APNs on one SIM card or between two SIM cards or network providers. The router can automatically switch between the network setups when the active PPP connection is lost, the data limit is exceeded, or the binary input on the front panel goes active.

Connect Any Sensor to the Internet of Things

You may define rules in the router for switching between two APNs on one SIM card or between two SIM cards or network providers. The router can automatically switch between the network setups when the active PPP connection is lost, the data limit is exceeded, or the binary input on the front panel goes active.

Spectre Router Configuration for Automatic Failover

You may define rules in the router for switching between two APNs on one SIM card or between two SIM cards or network providers. The router can automatically switch between the network setups when the active PPP connection is lost, the data limit is exceeded, or the binary input on the front panel goes active.

Sensor Networking Cost Model

Are the high costs of deploying cabling in your industrial environment preventing you from deploying a remote sensor monitoring solution?

Cellular and the Promise of SWARM Intelligence

The power of SWARM intelligence is visible in nature, where the collective efforts of very simple creatures like ants, bees and termites can produce highly sophisticated results.

SWARM Intelligence: Greater than the Sum of Its Parts

The power of SWARM intelligence is visible in nature, where the collective efforts of very simple creatures like ants, bees and termites can produce highly sophisticated results. Termites build enormous...

The Basics of MQTT

Message Queue Telemetry Transport (MQTT), is an open, lightweight publish/subscribe messaging protocol that was developed specifically for small, constrained devices over wireless networks. MQTT brings a simplicity and scalability not...

Solving Industrial Monitoring Challenges through Wireless I/O

Abstract Remote monitoring and control applications present a range of challenges. In recent years, new technologies and products have emerged to address some of these challenges, but in many cases...

SimpleWire Replacement with Zlinx® Radio Modems: Knowledge, Tips, Fixes

A problem free wireless network installation is more than a wish, it’s what most of our customers experience. But a little knowledge and planning up front makes succeeding on your...

Wireless Technology for Modern Health Care

Some medical devices become immensely more valuable if you can make them mobile. Moving a modern medical cart from room to room is far more efficient than moving the patients...

Smart Phones & M2M – Connecting Made Easy, Finally

by Bill Conley You could argue that wireless data communications began in 1782, when Claude Chappe used semaphore towers to send messages between Paris, France, and the city of Lille,...

USB: Adaptable for Industrial Applications

The Universal Serial Bus (USB) provides a high data rate and Hot Swap connection for PCs, providing an easy connection to a wide variety of multimedia and network USB devices....

Ruggedizing USB Connections for Tough Environments

USB is ubiquitous, it’s useful and it’s here to stay. But it isn’t inherently rugged or reliable. It’s up to you to make it that way. When technician John Baker...

The Ten Commandments of USB

Don’t forget that USB uses copper wire and can thus transfer power surges from lightning strikes or heavy machinery to places where they can do serious damage. You can prevent...

Data Line Isolation Theory

When it comes time to protect data lines from electrical transients, surge suppression is often the first thing that leaps to mind. The concept of surge suppression is intuitive and...

Optical Isolation: Your Best Investment for Reliability

In 1999 the Science department at NASA conducted a study on lightning, ground voltage, and structural impact. A building in North Carolina, located within 45 meters of a 42-meter water...

Make Your Tablets and Smart Phones Smarter – Add Serial Capability for Seriously Remote Data

by Andy Ross, Director or Wireless Applications To paraphrase Mark Twain, rumors about the demise of serial ports are greatly exaggerated. Serial ports are everywhere, in everything from industrial automation...

RS-485 Connections FAQ

How Do I Make RS-485 Connections? First check the pinout connections and specifications of the devices you want to connect in order to determine whether you need a “2-wire” RS-485...

RS-422 and RS-485 Applications eBook

A Practical Guide to Using RS-422 and RS-485 Serial Interfaces The purpose of this ebook is to describe the main elements of RS-422 and RS-485 data communications systems. The authors...

MTBF, MTTR, MTTF, FIT – Explanation of Terms

The intent of this White Paper is to provide an understanding of MTBF and other product reliability methods. Understanding the methods for the lifecycle prediction for a product enables the...

An Overview of Fiber Optic Technology

The use of fiber optics in telecommunications and wide area networking has been common for many years, but more recently fiber optics have become increasingly prevalent in industrial data communications...

Calculating Fiber Loss in Fiber Optic Networking

Fiber optic networking can be a daunting undertaking, but it really is not as difficult as it seems. Understanding factors such as fiber modes, fiber launch power, receive sensitivity, fiber...

Troubleshooting and Auto-Negotiation Features for Media Conversion Products

Media converters make the critical connection between different types of media, ensuring seamless integration of new equipmentin legacy networks. Media converters simply provide the electrical-to-optical conversion, and cost-effectively bridge the...

Introduction to Modbus

Modbus is one of the most popular protocols used in the industrial world. Supporting traditional serial protocols of RS232/422/485 and Ethernet protocols allow industrial devices such a PLCs, HMIs and...

Media Converters

Introduction to Media Converters Media converters play an important role in today’s multi-protocol, mixed media Local Area Networks. For example, LAN administrators can deploy media converters to integrate fiber optic cabling and active...

Port Powered Serial Converters FAQ

How do port powered serial converters derive their power? These converters steal their power from the connected RS-232 device’s output signals. As an example, a PC normally has outputs on the...

Managed Ethernet Switches

Key Features For a Powerful Industrial Network  Success for an industrial engineer has always had roots in the search for dependability and function at an affordable cost. Ethernet always held out the promise of high function...

Cellular Data Networking Goes Industrial

Refresh cycles for industrial data communications equipment have traditionally been measured in decades rather than years. That’s partly because of the enormous capital investments involved, partly because so many industrial...

What Is The Internet of Things?

There’s a lot of hype surrounding the phrase “Internet of Things”, but what does it really mean for you? Mike Fahrion offers a pragmatic approach to realizing the potential for...