SimpleWire Replacement with Zlinx® Radio Modems: Knowledge, Tips, Fixes

A problem free wireless network installation is more than a wish, it’s what most of our customers experience.

But a little knowledge and planning up front makes succeeding on your first try more likely. We’ve gone to great lengths to make it simple enough to take your wireless modems out of the box, plug in power and data lines, and voilà, your network is wireless.

There are few things more satisfying than seeing data roll in just like you’d run miles of cable, but quicker, easier, cheaper – and still reliable. But it’s still possible you’ll run into interference. So here’s a short list of things to make your “out of the box” experience a good one.


The first thing to check is the environment you want to install your radio modems in. Is it outdoors or indoors? Will you send data “line-of-sight” or are there obstructions? What distance do you need to go? Are there wireless antennas on the same band nearby?

Once these are established, getting the right equipment is simple. None of these factors are barriers to a successful system. But they’ll determine best placement for your radio modems, your antennas and whether you’ll need one or more repeaters.


The majority of industrial applications function completely well with wireless instead of hard wired links. But with the convenience and flexibility of wireless comes some tradeoffs.

Latency, or delay between sending and receiving data, is greater with wireless. Most networks handle a little added latency just fine. We’ve never seen a situation that wasn’t solved by fine tuning response times.

For example, a Modbus network may poll PLCs every 10ms, or have devices set to receive a response within 10ms. Even if it’s just sending 200 bytes on a 115,200 baud connection, you’re still not going to get it in 10ms on a wireless network. A simple change in polling rates and timeout timers handles this with no impact to operations.


One of our claims-to-fame is our wide variety of radio modems. Long range, short range, 868 and 900 MHz, and 2.4 GHz. 1mW to 1W outputs. 900 MHz works mostly in North and South America, 868 MHz in Europe because of different allocation of the radio spectrum. 2.4 MHz works almost everywhere.

Now you’d think with this wide variety to choose from, you just couldn’t go wrong, right? It turns out there are still a few technicians out there, who manage to get it wrong by not understanding the need for a wireless “performance buffer.”

Way back in wireless pre-history, someone told an engineer, “Tell me the furthest mountain tops these things will transmit between.” So he did some calculations, and the next thing he knew it was on every printed page and web page: “Maximum range of this fine equipment is 40 miles.”

The real functional maximum range of any piece of wireless equipment, compared to the “Maximum Range” often advertised, is half that distance. An industrial wireless installation needs a 10:1 signal strength “performance buffer,” or a full 10 dBm signal strength buffer. Cutting the maximum possible distance in half makes up for most of that needed buffer.

Do you really need 10X more power transmitted than a bare minimum, just as a buffer? Well, yes. When materials, machines, money and people are at stake, it’s the safe, secure and sure thing to do.

So when our technical specifications state the maximum range with a directional antenna is 20 miles, you can count on your equipment to be capable of that range. But keep in mind there are still many factors that kind of performance depends on.

Other things being equal, it’s better to go with 900 MHz modems instead of 2.4 GHz ones. The physics of RF make it so the 900 MHz frequency goes further, penetrates non-metal walls better, and has greater receive sensitivity. It’s also less crowded with interference.

But if you’ve got a really loaded 900 MHz wireless network nearby, you might want to choose the 2.4 GHz instead.


When your new modems arrive, there’s a natural inclination to just get them working and see what they’ll do. But if the first thing you do is send them out as far as they need to be, plug them in and turn them on, and nothing happens, it’s hard to tell what to fix.

It’s best to first conduct a round of bench testing. Either a loop back test or with equipment connected is fine. But if they don’t work there, neither will they in the field.

Other setup issues can range from non-matching channel numbers to 485 biasing termination. Our Quick Start Guides and manuals cover lots of ground, but if these aren’t enough help, please call.


Antennas aren’t difficult, but they can cause a lot of problems if you don’t understand some basics. If the signal doesn’t get through to the other end, your “wire” is, after all, effectively cut.

If there’s a single best fix for antenna problems, it’s to put the antenna higher. Sometimes it may be the only option, like to clear large grove of trees. But naturally there are limits, like neighbors and airplanes. And just a few added meters of height can make a big difference, if you’re competing with a nearby antenna on the same frequency.

There are two basic kinds of antenna typically used for radio modems. An omni-irectional antenna, usually a dipole or “stick” antenna, has shorter range but broadcasts 360°. “Omni” doesn’t mean “all” in this case, as these don’t broadcast or receive straight out from the tip.

The directional or high gain antenna is most often a Yagi multi-element. These have three or four (or more) dipoles lined up parallel, getting progressively shorter toward the front. They direct the signal so it works in one direction, for both transmitting and receiving.

For example, in a typical Modbus system the Modbus master uses an omnidirectional or dipole antenna that communicates with many devices. The slave devices, on the other hand, would most often be directional or Yagi antennas, as they only need to reach the master.

Polarization refers to the horizontal vs. vertical orientation of the antenna, which is also the orientation of the radio signal that’s sent or received. Both antennas must have identical polarization.

This leads to some interesting tricks with wireless setups. Four radio modems can share the same pathway, with two radios oriented horizontally and the other two vertically. This applies to directional yagis as well as omnidirectional dipoles.

Aiming a directional antenna is easy if you can see the other antenna. But if it’s too far to see, using a map or GPS and compass to point a more precise direction may be necessary to even start the process.

An RF site survey can be done up front to establish signal strength patterns in challenging settings. Changing modem placement can make a big difference in signal strength around high-power metal equipment. Some devices even have signal strength meters to help with this.


Shorter is better. Fewer connections are better. And the longer the distance between your modem and antenna, the more you need cable that loses the least amount of signal strength possible along the way.

Of course, antenna grade cable is more expensive than regular coax, but it’s well worth it.


Baud rate or data rate is another tradeoff. Many core industrial applications don’t take much bandwidth, so this doesn’t have to be a problem.

However, baud rate can be an even more important as it affects the distance your wireless signal travels. As baud rate goes down, receive sensitivity goes up. And receive sensitivity has every bit as much to do with how far a wireless signal can be received as does transmit power.

Zlinx LR or long range modems are adjustable between 115,200 bps and 9,600 bps, to maximize performance in longer distance situations.

If the network is big enough over the air data rate can also be an issue. If this is the case, such measures as fine tuning polling frequency and similar are also effective here.


When all else fails, bring your modems back to your shop, reset all settings and options back to default and do a bench test. A little parable shows how understanding some basics can help after that.

A customer called in with no signal between his two modems. After a bench test showed the modems were OK, we reviewed one issue at a time. Come to find out, his dipole antennas were pointed antenna tip to antenna tip. No amount of signal strength could overcome that.

The cable between his base station modem and the antenna was an incredible length. With 15 different connectors and all kinds of different cable linked together, most of it wasn’t antenna cable, either. Once again, no wonder there was no signal.


There are answers all your wireless questions. From product specs, network design and product selection, to ordering and system setup. Your best resource – and safety net – is our customer service, technical support and applications engineers.

Making Wireless Sensors as Accessible as Web Servers

The Internet of Things revolution is upon us, and by the year 2020, therewill be over 50 billion connected things in the world. With the world’s population increasing and resources...

Wzzard Network Planning and Installation Application Note

Planning, deploying and installing a Wzzard network does not require any special network expertise. But some simple guidelines should be followed. Let’s discuss some topics that are the keys to enabling a robust network installation. These include Planning a Deployment, Verification of Network Health and Troubleshooting common problems.

Getting Security Right in Wireless Sensor Networks

You may define rules in the router for switching between two APNs on one SIM card or between two SIM cards or network providers. The router can automatically switch between the network setups when the active PPP connection is lost, the data limit is exceeded, or the binary input on the front panel goes active.

Wzzard Security Platform

The Spectre Network Gateway places the SmartMesh IP network behind a firewall. If connecting via the cellular data networks, the Spectre Network Gateway lets users use VPN tunneling, which makes the cellular systems as secure as proprietary infrastructure.

A Second Warm Welcome to Wireless Mesh Networking

You may define rules in the router for switching between two APNs on one SIM card or between two SIM cards or network providers. The router can automatically switch between the network setups when the active PPP connection is lost, the data limit is exceeded, or the binary input on the front panel goes active.

Connect Any Sensor to the Internet of Things

You may define rules in the router for switching between two APNs on one SIM card or between two SIM cards or network providers. The router can automatically switch between the network setups when the active PPP connection is lost, the data limit is exceeded, or the binary input on the front panel goes active.

Spectre Router Configuration for Automatic Failover

You may define rules in the router for switching between two APNs on one SIM card or between two SIM cards or network providers. The router can automatically switch between the network setups when the active PPP connection is lost, the data limit is exceeded, or the binary input on the front panel goes active.

Sensor Networking Cost Model

Are the high costs of deploying cabling in your industrial environment preventing you from deploying a remote sensor monitoring solution?

Cellular and the Promise of SWARM Intelligence

The power of SWARM intelligence is visible in nature, where the collective efforts of very simple creatures like ants, bees and termites can produce highly sophisticated results.

SWARM Intelligence: Greater than the Sum of Its Parts

The power of SWARM intelligence is visible in nature, where the collective efforts of very simple creatures like ants, bees and termites can produce highly sophisticated results. Termites build enormous...

The Basics of MQTT

Message Queue Telemetry Transport (MQTT), is an open, lightweight publish/subscribe messaging protocol that was developed specifically for small, constrained devices over wireless networks. MQTT brings a simplicity and scalability not...

Solving Industrial Monitoring Challenges through Wireless I/O

Abstract Remote monitoring and control applications present a range of challenges. In recent years, new technologies and products have emerged to address some of these challenges, but in many cases...

Wireless Technology for Modern Health Care

Some medical devices become immensely more valuable if you can make them mobile. Moving a modern medical cart from room to room is far more efficient than moving the patients...

Smart Phones & M2M – Connecting Made Easy, Finally

by Bill Conley You could argue that wireless data communications began in 1782, when Claude Chappe used semaphore towers to send messages between Paris, France, and the city of Lille,...

USB: Adaptable for Industrial Applications

The Universal Serial Bus (USB) provides a high data rate and Hot Swap connection for PCs, providing an easy connection to a wide variety of multimedia and network USB devices....

Ruggedizing USB Connections for Tough Environments

USB is ubiquitous, it’s useful and it’s here to stay. But it isn’t inherently rugged or reliable. It’s up to you to make it that way. When technician John Baker...

The Ten Commandments of USB

Don’t forget that USB uses copper wire and can thus transfer power surges from lightning strikes or heavy machinery to places where they can do serious damage. You can prevent...

Data Line Isolation Theory

When it comes time to protect data lines from electrical transients, surge suppression is often the first thing that leaps to mind. The concept of surge suppression is intuitive and...

Optical Isolation: Your Best Investment for Reliability

In 1999 the Science department at NASA conducted a study on lightning, ground voltage, and structural impact. A building in North Carolina, located within 45 meters of a 42-meter water...

Make Your Tablets and Smart Phones Smarter – Add Serial Capability for Seriously Remote Data

by Andy Ross, Director or Wireless Applications To paraphrase Mark Twain, rumors about the demise of serial ports are greatly exaggerated. Serial ports are everywhere, in everything from industrial automation...

RS-485 Connections FAQ

How Do I Make RS-485 Connections? First check the pinout connections and specifications of the devices you want to connect in order to determine whether you need a “2-wire” RS-485...

RS-422 and RS-485 Applications eBook

A Practical Guide to Using RS-422 and RS-485 Serial Interfaces The purpose of this ebook is to describe the main elements of RS-422 and RS-485 data communications systems. The authors...

MTBF, MTTR, MTTF, FIT – Explanation of Terms

The intent of this White Paper is to provide an understanding of MTBF and other product reliability methods. Understanding the methods for the lifecycle prediction for a product enables the...

An Overview of Fiber Optic Technology

The use of fiber optics in telecommunications and wide area networking has been common for many years, but more recently fiber optics have become increasingly prevalent in industrial data communications...

Calculating Fiber Loss in Fiber Optic Networking

Fiber optic networking can be a daunting undertaking, but it really is not as difficult as it seems. Understanding factors such as fiber modes, fiber launch power, receive sensitivity, fiber...

Troubleshooting and Auto-Negotiation Features for Media Conversion Products

Media converters make the critical connection between different types of media, ensuring seamless integration of new equipmentin legacy networks. Media converters simply provide the electrical-to-optical conversion, and cost-effectively bridge the...

Introduction to Modbus

Modbus is one of the most popular protocols used in the industrial world. Supporting traditional serial protocols of RS232/422/485 and Ethernet protocols allow industrial devices such a PLCs, HMIs and...

Media Converters

Introduction to Media Converters Media converters play an important role in today’s multi-protocol, mixed media Local Area Networks. For example, LAN administrators can deploy media converters to integrate fiber optic cabling and active...

Port Powered Serial Converters FAQ

How do port powered serial converters derive their power? These converters steal their power from the connected RS-232 device’s output signals. As an example, a PC normally has outputs on the...

Managed Ethernet Switches

Key Features For a Powerful Industrial Network  Success for an industrial engineer has always had roots in the search for dependability and function at an affordable cost. Ethernet always held out the promise of high function...

Cellular Data Networking Goes Industrial

Refresh cycles for industrial data communications equipment have traditionally been measured in decades rather than years. That’s partly because of the enormous capital investments involved, partly because so many industrial...

What is SmartMesh IP™?

SmartMesh IP is defining the way to connect smart devices. With advanced network management and comprehensive security features, SmartMesh IP delivers reliable, scalable, energy efficient wireless sensor connectivity. Using up...

What Is The Internet of Things?

There’s a lot of hype surrounding the phrase “Internet of Things”, but what does it really mean for you? Mike Fahrion offers a pragmatic approach to realizing the potential for...